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Abstract—Quantum annealing (QA) that encodes optimization
problems into Hamiltonians remains the only near-term quantum
computing paradigm that provides sufficient many qubits for
real-world applications. To fit larger optimization instances on
existing quantum annealers, reducing Hamiltonians into smaller
equivalent Hamiltonians provides a promising approach. Unfor-
tunately, existing reduction techniques are either computationally
expensive or ineffective in practice. To this end, we introduce
a novel notion of non-separable group, defined as a subset of
qubits in a Hamiltonian that obtains the same value in optimal
solutions. We develop non-separability theory accordingly and
propose FastHare, a highly efficient reduction method. FastHare,
iteratively, detects and merges non-separable groups into single
qubits. It does so within a provable worst-case time complexity of
only O(αn2), for some user-defined parameter α. Our extensive
benchmarks for the feasibility of the reduction are done on both
synthetic Hamiltonians and 3000+ instances from the MQLIB
library. The results show FastHare outperforms the roof duality,
the implemented reduction in D-Wave’s library. It demonstrates
a high level of effectiveness with an average of 62% qubits saving
and 0.3s processing time, advocating for Hamiltonian reduction
as an inexpensive necessity for QA.

I. INTRODUCTION

The last few years has witnessed an exponential growth in
quantum and quantum-inspired computing (QC) with a record
number of breakthroughs [1], [2], [3], [4], [5]. Instead of
encoding information with binary bits as in classical comput-
ing, quantum computers use qubits to encode superposition of
states [3] to explore exponentially combinations of states at
once. QC has paved the way for much faster, more efficient
solving of large-scale real-world optimization problems that
are challenging for classical computers [1], [3].

One promising near-term avenue for QCs is quantum an-
nealing (QA) [6], [7], a framework that incorporates algo-
rithms and hardware designed to solve computational prob-
lems. QA leverages quantum tunneling mechanics to per-
form quantum evolution toward the ground states of final
Hamiltonians that encode classical optimization problems,
without necessarily insisting on universality or adiabaticity
[6]. QA is the only computing paradigm that provides a large
enough number of qubits for real-world applications from
RNA folding [8], [9], [10], portfolio optimization [11], [12],
car manufacturing scheduling [13] and many others [14], [15],
[16]. In addition, the number of Qubits tends to double every
20 months over the last decade [17].
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Yet, the limited hardware resource, including the relatively
small numbers of both qubits and their couplings, as well
as the challenges in mapping the problem Hamiltonian on
quantum processing unit (QPU) hardware topology, aka minor-
embedding [18], pose significant challenges in scaling the
QA to the real-world instances. For example, performing
MIMO channel decoding with a 60Tx60R setup on a 64-QAM,
a configuration several folds lower than the state-of-the-art
hardware, will require about 11,000 physical qubits [19]. This
hardware requirement far exceeds the 5000+ qubits offered
by the largest commercially available quantum annealer, the
D-Wave Advantages platform. Thus, qubits saving techniques
to reduce the hardware resource is much needed to reduce
hardware resource requirement, as well as increasing the size
of solvable instances on existing QPUs.

Only a few qubits reduction techniques have been studied,
yet, are not effective for QA. The most popular method is
the roof duality [20], implemented in the Ocean SDK by
D-Wave. The method aims to find partial assignment to bi-
nary variables in quadratic unconstrained binary optimization
(QUBO) formulation, an equivalent form to the Hamiltonian1.
Despite its fast processing time, the method only works in a
few special cases that rarely happen in practice, as seen in
our comprehensive experiments. Several other methods also
target partial assignment of variables in QUBO [21], [22], [23],
however, their high time-complexities make them unsuitable
for QA, in which a high reduction time can nullify the fast
processing advantage of QPUs.

To this end, we investigate the task of reducing (final)
Hamiltonian to an “equivalent” albeit smaller Hamiltonian
to save on hardware resource. Given an Hamiltonian H that
encodes a classical optimization problem, a reduction of H is
a pair of a new Hamiltonian Hr and a mapping f that maps,
in a polynomial time, each ground energy state (aka optimal
solution) of Hr to a ground energy state of H . Thus, the
ground energy state of H that encodes an optimal solution to
a optimization problem, can be found by finding those of Hr

and performing a mapping with f . An effective Hamiltonian
reduction that results in small Hr can lead to a huge saving
in physical qubits.

We introduce a novel notion of non-separable group, de-
fined as a subset of spins (or logical qubits) in a Hamiltonian

1D-Wave SDK converts the QUBO formulations to Hamiltonians internally
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that obtains the same value in ground states. A group of non-
separable spins can be merged into ones, and the weights
associated with them can be combined to result in a Hamilto-
nian with fewer spins. Thus, the identification of non-separable
spins lead to natural methods to reduce Hamiltonian.

Through developing theory on non-separable groups, we
develop an efficient Fast Hamiltonian Reduction, or FastHare
that, iteratively, detects and merges non-separable groups of
spins. It has a provable worst-case time complexity of only
O(αn2), for some user-defined parameter α while exhibiting
linear running time in practice. FastHare focuses on identifi-
cation of small non-separable groups of size 2 and 3. Further,
it utilizes non-separability index, a measure on how ”non-
separable” a group is, of small groups to aid in locating
larger non-separable groups. Our approach is different than
the vast majority of existing reduction techniques that rely on
identification of partial assignments on variables and has the
lowest time-complexity of all.

We perform the first large-scale benchmarks for the feasi-
bility of the reduction on both synthesized Hamiltonian and
3000+ instances from the MQLib library. The roof duality
[24], implemented in D-Wave’s library, cannot reduce any
synthesized instances and only reduce 8.9% of MQLib in-
stances. In contrast, FastHare can reduce 100% of synthesized
instances and 43% of MQLib instances. And when it does,
it shows a high level of effectiveness with an average 62%
physical qubits saving and 0.3s processing time. Thus, it makes
Hamiltonian reduction techniques an inexpensive necessity and
ready to be adopted for QA.

Organization. We begin by introduce Ising model and
prelimnaries in Section II. The theory on non-separability
and reduction techniques based on identifying non-separable
groups are presented in Section III. FastHare is introduced
in Section IV and the experiments is discussed in Section V.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

We present Ising Hamiltonian that encodes combinatorial
optimization problems and the quantum annealing process to
solve the formulated problem on quantum annealers. Further,
we define a new notion of polynomial-time Hamiltonian
reduction and the problem of finding efficient Hamiltonian
reduction.

A. Ising model and QUBO

Quantum annealers including D-Wave’s can solve optimiza-
tion problems formulated as an Ising model [25]. The Ising
model describes a physical systems with n sites. Each site i
is associated with a discrete variable si ∈ S = {−1,+1},
representing the site’s spin. Each assignment of spin value
s ∈ Sn, called a spin configuration, associates with an energy
of the system, defined through the Ising Hamiltonian

H(s) = −
n∑
i=1

hisi −
n∑

i,j=1

Jijsisj = −hT s− sTJs (1)

where hi is the external magnetic field at site i and Jij is the
coupling strength between sites i and j. For a pair i, j, Jij > 0
(Jij < 0) indicates a ferromagnetic (antiferromagnetic) inter-
action.

The configuration probability, the probability that the sys-
tem is in a state with spin configuration s is given by the
Boltzmann distribution with inverse temperature β ≥ 0

Pβ(s) =
e−βH(s)

Zβ
,

where β = (kBT )−1, and the normalization constant

Zβ =
∑
s∈Sn

e−βH(s)

is the partition function.
The ground state of an Hamiltonian associates with the spin

configuration of lowest energy

s∗ = arg min
s∈Sn

H(s) (2)

and can be searched for using the quantum annealing process.
Quadratic Unconstrained Binary Optimization (QUBO). An-
other popular formulation to encode optimization problem
for quantum annealing is QUBO that minimizes a quadratic
polynomial over binary variables

x∗ = arg min
x∈{0,1}n

Q(x) =
∑
i,j∈[n]

qijxixj ,

where x = (x1, · · · , xn) ∈ {0, 1}n.
A QUBO can be easily converted back and forth to an Ising

Hamiltonian by changing variables xi = si+1
2 [18].

B. Quantum Annealing (QA)

QA [26], [6] is a class of methods to find global optima
in combinatorial optimization problems, especially when op-
timization landscapes are full with local optima. The method
is inspired by the classical simulated annealing (SA) method
in which an “annealing schedule” dictates the temperature
variation that in turns decides the probability that a candidate
state switch to neighboring states.

In QA, quantum-mechanical fluctuation such as quantum
annealing is utilized to explore the solution space, mimicking
the idea of thermal fluctuations in SA. The system evolves
from an initial Hamiltonian ground state that is easy to find
and setup to a final Hamiltonian ground state that encodes
the optimization problem. QA is closely related to quantum
adiabatic evolution, used in adiabatic quantum computation
[27], [28], however, the adiabatic conditions are relaxed for
faster processing time.

Embedding Hamiltonian to QPU Hardware Topology. Since
the qubits in an quantum annealer are not necessarily all-to-
all connected, the Ising Hamiltonian for the orginial problem
often need to be mapped to a hardware Ising Hamiltonian
through a process called minor embedding [18], [29]. The
process will map each qubit in the original Hamiltonian,
termed logical qubits to one or multiple physical qubits on the
annealer. The solution of the embedded Hamiltonian induces



the solution to the original Hamiltonian, when sufficiently
large coupling strengths are used among physical qubits that
associate to the same logical qubit [18]. An example of minor-
embedding on the D-Wave annealer can be seen in Fig. 2.

C. Polynomial-time Hamiltonian Reduction

We introduce a new notion of reduction among Hamilto-
nians, following the polynomial-time reductions among NP-
complete problems [30].

Definition II.1 (Polynomial-time Hamiltonian Reduction).
Given two Ising Hamiltonians H(x) and H ′(y) with x ∈ Sn
and y ∈ Sl, we say that H(x) is polynomial-time reducible
to H ′(y) if and only if
• Efficient mapping. There exists a polynomial-time com-

putable function f : Sl → Sn, called reduction function,
that maps each spin configuration y ∈ Sl to a spin
configuration x ∈ Sn.

• Optimality-preserving. Map each ground state of H ′(y)
to a ground state of H(x). That is for any

y∗ = arg min
s∈Sl

H ′(y),

we have

H (x∗ = f(y∗)) = min
x∈Sn

H(x).

We use the notation H(x)
f−→ H ′(y) to denote that H(x)

is polynomial-time reducible to H ′(y) with the reduction
function f . When the context clear, we also use Hamiltonian
reduction or reduction in place for polynomial-time Hamilto-
nian reduction.

The reduction function f in this paper will be, in most
cases, a simple linear map that assigns x∗i = −1sg(i)y∗π(i), i =
1, . . . , n where π(i) ∈ {1, . . . , l} and sg(i) ∈ {0, 1}.

Composition of reductions. The composition of two or more
Hamiltonian reductions is also a Hamiltonian reduction. Given
two Hamiltonian reductions H1(x)

f1−→ H1(y) and H2(y)
f2−→

H3(z), we can verify that H1(x)
f1◦f2−−−→ H3(z), i.e., H1(x) is

also reducible to H3(z) with reduction function f1 ◦ f2.
Reduction ratio. Preferably, we want to reduce each Hamil-

tonian H(.) to a smaller Hamiltonian H ′(.). Here, the size of
a Hamiltonian H(.), denoted by size(H) can be measured as
either the number of logical qubits, the number of couplings,
or the number of physical qubits. The reduction ratio of a
Hamiltonian reduction is defined as

1− size(H ′)

size(H)
. (3)

Without otherwise mention, we will measure the size as
the number of physical qubits needed to implemented the
Hamiltonian on QPU hardware topology, e.g. through minor-
embedding. The maximum reduction ratio is 100% when H(.)
can be reduced to an empty Hamiltonian, i.e., the ground state
of H(.) can be found using the reduction function.

Efficient Hamiltonian reduction problem. Our main goal is
to develop Hamiltonian reduction algorithms that maximizes

 
1.  Ising Hamiltonian 2.  Sherrington-

Kirkpatrick  Hamiltonian 3.  SK Graph

4.  SK Graph5.  Sherrington-
Kirkpatrick  Hamiltonian6.  Ising Hamiltonian

Hamiltonian
reduction

Graph
compression

Fig. 1: Hamiltonian reduction via compressing non-separable groups
in SK graph.

the reduction ratio. It is critical that the proposed reduction
algorithm has a low time-complexity to make sure the reduction
time does not dominate the solving time on the quantum
annealer.

III. NON-SEPARABILITY THEORY AND
GRAPH-BASED HAMILTONIAN REDUCTION

In this section, we propose a Hamiltonian reduction frame-
work via graph compression as shown in Fig. 1. First, we
convert Ising Hamiltonian into Sherrington-Kirkpatrick (SK)
Hamiltonian, and then SK graph that minimum-cut induces
the ground state for the Hamiltonian. We then develop non-
separability theory for SK graph and show how compressing
non-separable groups in the graph can lead to efficient Hamil-
tonian reduction.

A. Minimum-cut on Sherrington-Kirkpatrick (SK) Graphs

We introduce a new graph, called Sherrington-Kirkpatrick
(SK) graph that encloses both the coupling strengths and the
external fields in an Ising Hamiltonian. More importantly, find-
ing the weighted mininmum-cut on the SK graph is equivalent
to finding the ground state of the Ising Hamiltonian. Thus, the
SK graph provides a pure graph theory tool for minimizing
the energy of Ising Hamiltonians.

a) Construction: Given an Ising Hamiltonian H(x) =
hTx + xTJx with n variables, the SK graph of H(x) is
denoted by GSKH = (V,E,w). The set of nodes V =
{1, 2, . . . , n, n + 1} in which nodes 1, 2, . . . , n correspond
to the variables x1, x2, . . . , xn in the Hamiltonian. Node
(n + 1) is added to capture the external fields h. The set
of undirected edges E consists of undirected edges (i, j) with
weight wij = Jij + Jji for 1 ≤ i, j ≤ n and (i, n + 1) with
weights wi,n+1 = hi. For efficiency, we only retain in E edges
with non-zero weights.

We denote by J′ the weighted adjacency matrix of GSK .
J′ can be seen as the result of appending the external fields h
to the right of J (after assigning Jij = Jij + Jji, Jji = 0 for
i < j). For y ∈ Sn+1, J′ corresponds to a Hamiltonian

HSK(y) = −yTJ′y.



HSK contains no external fields and is in a form of a
Sherrington-Kirkpatrick Hamiltonian [31], hence, we named
the constructed graph SK graph. In fact, we can prove that

min
y∈Sn+1

HSK(y) = min
y∈Sn+1

−yTJ′y

= min
y∈Sn+1

−
∑

1≤i,j≤n

Jijyiyj − yn+1

∑
1≤i≤n

hiyi

= min
x∈Sn

H(x). (4)

The last equality holds as we can always replace y with
−y to ensure yn+1 = 1 without changing the energy of the
Hamiltonian HSK(y).

b) Equivalence between minimizing energy and weighted
min-cut (WMC) on SK graph: For any subset S ⊆ V , S
induces a cut 〈S, V \ S〉, consisting of the edges crossing S
and V \ S. The capacity of the cut is defined as

c(S) =
∑

(u,v)∈〈S,V \S〉

wuv.

We consider the following variation of the weighted min-cut
(WMC) problem of finding

mc(G) = arg min
S⊆V

c(S).

Remark that the cut space includes the empty cut S = ∅
(or equivalently S = V ). This is different from the standard
minimum-cut problem in which cuts often contain at least one
node on each side. For example, since c(∅) = 0, it follows that,

MC(G) = min
S⊆V

c(S) ≤ 0,

where MC(G) denotes the minimum capacity of any cut.
Thus, min-cuts in WMC often have negative capacities.

There is a one-to-one mapping between the capacity of the
cut in GSK to the energy of the Hamiltonian HSK . Define
for a subset S ⊆ V , the corresponding vector y(S) ∈ Sn+1,
in which for v ∈ V

y(S)v =

{
+1 if v ∈ S,
−1 if v /∈ S, .

We have,

c(S) =
∑

(u,v)∈〈S,V \S〉

wuv =
1

4

∑
(u,v)∈E

wuv(y
(S)
u − y(S)v )2

= −1

2

∑
(u,v)∈E

wuvsusv +
1

2

∑
(u,v)∈E

wuv

= HSK(y(S)) + cw,

where cw = 1
2

∑
(u,v)∈E wuv = 1

2

∑
i,j J

′
ij is a fixed value

that depends only on w.

Thus, finding the lowest energy of Hamiltonian HSK and
H(x) (from Eq. 4) is the same as finding the WMC on GSK .

Lemma III.1. For cw = 1
2

∑
i,j J

′
ij ,

min
x∈Sn

H(x) = min
y∈Sn+1

HSK(y) = MC(G)− cw.

c) Deriving minimum energy configuration from min-cut:
Let S∗ = mc(GSK) and x(S∗) be the vector obtained from
y(S∗) by removing the (n+1)th element y(S

∗)
n+1 . If y(S

∗)
n+1 = −1,

we multiply x(S∗) with −1. We can verify that

H(x(S∗)) = min
x∈Sn

H(x) (5)

d) SK graph vs. Hamiltonian/QUBO graphs: The Hamil-
tonian graph induced by J does not contain the information
on the external fields and, thus, can not represent the Hamil-
tonian, standing alone. The QUBO obtained by converting the
Hamiltonian to a QUBO formulation has edge weights that are
different from the coupling strengths in the hardware. Hence,
it may not reflect the physical interactions among the sites. In
contrast, the SK graph encloses both the external fields and
coupling strengths (that are close to the implemented ones on
the hardware). It enables the exploration of the Hamiltonian’s
energy landscape via exploring the cut space on the SK graph.

B. Non-separable Groups (NGs)

We introduce new notions of non-separable groups (NGs)
in a weighted undirected graph, non-separability index, and a
Hamiltonian reduction framework based on identifying non-
separable groups.

Let G = (V,E,w) be a weighted undirected graph, e.g, the
SK graph of some Ising Hamiltonian. A subset X ⊆ V is
called a non-separable group, if all min-cuts on G will have
all nodes in X on one side. Here, we use min-cut to refer
to an optimal cut for the WMC problem on G. If X stays
completely on one side of some (but not all) min-cuts, we say
X is a weakly non-separable group. As we will show in the
next subsection, all nodes in a (weakly) non-separable group
can be merged into a single node, creating a smaller graph.
Importantly, any min-cut in the smaller graph can be easily
extended to a min-cut in G.

a) Properties of non-separable groups: We show the
basic properties of non-separable groups, including hereditary,
and the closesure under intersection and union.

Lemma III.2. Let X,Y be non-separable groups on G.

1) Hereditary. Any subset of S ⊆ X is also non-separable.
This statement also holds when X is a weakly non-
separable group.

2) Closure under intersection and union. Both X ∩ Y and
X∪Y are non-separable. The statement also holds when
only one of X or Y is non-separable and the other is
weakly non-separable.

The proof comes directly from the definition of non-
separable and weakly non-separable groups.

b) Non-separability index: We propose a measure,
termed non-separability index, to quantify how “difficult” to
separate a group of nodes X ⊆ V . Here, we say a cut S ⊆ V
separates a set X if there exist two nodes u, v ∈ X such that
u ∈ S and v /∈ S. Formally,



Definition III.3 (Separation). Consider a cut S ⊆ V and a
subset X ⊆ V , we say S separates X , denoted by, S 	X iff

X ∩ S /∈ {∅, X}.

We also denote by sep(X) = {S ⊆ V : S	X} the collection
of all cuts in G that separate X .

The non-separability index of X is defined as the difference
between the minimum capacities of the cuts in sep(X) and
those outside sep(X).

Definition III.4 (Non-separability index). Given a graph G
and a subset X ⊆ V , the non-separability index of X is
defined as

νG(X) = min
S′∈sep(X)

c(S′)− min
S⊂V,S /∈sep(X)

c(S). (6)

For a non-separable group X , the non-separability index
is the minimum increase in the cut capacity to turn some
min-cut into a new cut that separates X . If G is a SK graph
for some Hamiltonian H(x), the non-separability index of X
corresponds to the energy gap between the ground state and
the next excited state that separates X , i.e., having two spins
in X with opposite signs.

The non-separability index νG(X) acts as an indicator on
whether node groups are non-separable. When the context is
clear, we omit the graph G and write ν(X).

Theorem III.5 (Non-separability conditions). Given a group
of nodes X ⊆ V ,
• X is a non-separable group iff ν(X) > 0.
• X is a weakly non-separable group iff ν(X) = 0.

Proof. We prove the first statement. If X is a non-separable
group, it follows that none of the min-cuts can appear in
sep(X). From Eq. 6, we have

ν(X) = min
S′∈sep(X)

c(S′)− min
S⊂V,S /∈sep(X)

c(S)

= min
S′∈sep(X)

c(S′)− min
S⊆V

c(S) > 0.

Vice versa, if ν(X) > 0, none of the min-cuts can appear in
sep(X) (otherwise ν(X) ≤ 0).

Similarly, we can show the second statement by noting that
ν(X) = 0 iff min-cuts appear both in sep(X) and out of
sep(X).

c) Antipolar pair: Consider a special case when X
contains a pair of nodes u and v. There are three possible cases
for the value of ν(X): 1) ν(X) > 0, X is a non-separable
group; 2) ν(X) = 0, X is a weakly non-separable group; and
3) ν(X) < 0, in this case, we say u and v is an antipolar pair.
For an antipolar pair u, v, we have, by Eq. 6, all min-cuts must
belong to sep(X) (otherwise ν(X) ≥ 0). In other words, an
antipolar pair always stay in different sides in all min-cuts.

As we will show in next subsection, by negating the weights
of all edges incident at u (or v), we can turn u and v into a
non-separable pair in the new graph.

Fig. 2: An example of graph compression framework via
non-separability theory. The compression reduce the physical
qubits by 3+ folds (a 69% reduction ratio).

C. Hamiltonian Reduction by Compressing NGs

As shown in Fig. 1, after converting an Ising Hamiltonian
into a SK graph GSK = (V,E,w), we will compress non-
separable groups (NGs) in GSK into a smaller graph GSKc
that helps us construct the Hamiltonian reduction.

At a high glance, our graph compression framework consists
of three steps. First, we identify NGs and antipolar pairs, for
example, using methods presented in Section IV. Second, we
apply the non-separability theory, especially the hereditary and
the closure under the union, to enlarge NGs. Finally, we merge
each NG into a single node then apply a flip operation to turn
antipolar pairs into non-separable pairs that are further merged
into single nodes. The three steps are repeated until no further
NGs or antipolar pairs are detected as shown in Fig. 2.

1) Identification of NGs and antipolar pairs: In this step,
we search on GSK to identify NGs, weakly NGs, and antipolar
pairs, for example, using the algorithm in Section IV. We
denote by Xs, Xw, and R the sets of found NGs, weakly
NGs, and antipolar pairs, respectively.

2) Enlarging NGs and antipolar pairs: By applying the
closure of NGs and weakly NGs under union, we can enlarge
and combine the identified NGs, weakly NGs. Specifically, we
apply the following rules:

• if X and Y are two NGs, X∪Y is an NG (Lemma III.2).
• if x and y is an antipolar pair and y ∈ Y for some NG
Y , then for all z ∈ Y , x, z is an antipolar pair.

• if x, y and y, z are two antipolar pairs, {x, z} is an NG.

We can use a linear-time algorithm, similar to a node coloring
algorithm in a bipartite graph, to repeat the above rules until
no further extension is possible. In addition, the above rules
can also be extended to include weakly NGs.

3) Compression of NGs and antipolar pairs: We present
compression of NGs, weakly NGs, and antipolar pairs. In a
single round, we will ignore weakly NGs unless there are no
NGs nor antipolar pairs. To preserve min-cuts, we can only
compress one weakly NG at a time and have to repeat the



identification steps. In contrast, multiple NGs and antipolar
pairs can be compressed simultaneously in a single round.

a) Compression of an NG (or weakly NG) to a single
node: The compression of an NG (or weakly NG) X is done
simply by merging nodes in X into a single nodes. Parallel
edges will be resolved by aggregating the weights.

b) Compression of an antipolar pair: An antipolar pair
u, v is compressed by first, flipping node u (or v), followed
by merging of u and v. The flip of node u is done by negating
the weights of all edges incident at u.

Due to the space limit, we omit the proofs on the correctness
of the enlarging and compression steps. However, most of
the proofs are due to the fact that compression of NGs will
preserve min-cuts as each NG will never be separated by any
min-cut in the first place.

IV. FAST HAMILTONIAN REDUCTION (FASTHARE)

We propose FastHare algorithm, an instance of the compres-
sion framework in Section III with the focus on fast running
time. FastHare limits the search to small-size NGs. Further, it
uses a nested collection of fast and tight-but-expensive bounds
in scanning for potential NGs.

It follows by efficient bounds for small-size NGs of size
2 and 3 in Subsection IV-B. Third, we present in Subsection
IV-C, the efficient search techniques in FastHare that limit the
time complexity to O(αn2) IV-B. Finally, Subsection IV-D
provides the complexity analysis.

A. Bounds to Prove Non-separability

We begin with a lower bound for the non-separability index
for groups of any size. The bound will be used in FastHare to
determine whether a group is an NG.

We define some necessary notations. Given an undirected
and weighted graph G = (V,E,w), we extend wuv to define
wuv = 0 if (u, v) /∈ E. For a node u ∈ V , we denote
by w(u) = (wu1, · · · ,wun) the weight vector of the node
u and by ‖w(u)‖ =

∑n
v=1 |wuv| the 1-norm of w(u). We also

define c|.|(S, T ) =
∑
u∈S,v∈T |wuv|, the total absolute values

of weights over all edges between S and T .

Lemma IV.1 (Non-separability index lower bound). Consider
a graph G = (V,E,w) and a set X ⊆ V , we have

νG(X) ≥ ν̂G(X) = min
Z⊂X,Z 6=∅

(c(Z,X \ Z)− PX(Z)),

where

PX(Z) = min
(1

2

∑
u∈Y

∣∣∣∣∣∣
∑
v∈Z

wuv −
∑

v∈X\Z

wuv

∣∣∣∣∣∣ ,
c|.|(Z, Y ), c|.|(X \ Z, Y )

)
,

and Y = X̄ = V \X .

Proof. Based on Def. III.4, we have,

νG(X) ≥ min
S⊆V,S	X

(
C (S)−min

(
C (S \X) , C

(
S̄ \X

)))
For any set S ⊆ V, s.t., S 	 X , let T = S̄ = V \ S. Let
XS = X ∩ S,XT = X ∩ T be the intersections of X and

S, T , respectively. Let YS = S \ XS , YT = T \ XT be the
intersections of Y and S, T , respectively.

We have

c(S)−min(c(S \X), c(T \X))

= max(c(S)− c(S \X), c(S)− c(T \X))

= max(c(XS , XT ) + c(XS , YT )− c(XS , YS),

c(XT , XS) + c(XT , YS)− c(XT , YT ))

= c(XS , XT )−min(c(XS , YS)− c(XS , YT ),

c(XT , YT )− c(XT , YS))

Let Q(S) = min(c(XS , YS) − c(XS , YT ), c(XT , YT ) −
c(XT , YS)). We have,

Q(S) ≤ 1

2
(c(XS , YS)− c(XS , YT )

+ c(XT , YT )− c(XT , YS))

=
1

2

∑
u∈YS

( ∑
v∈XS

wuv −
∑
v∈XT

wuv

)

+
1

2

∑
u∈YT

( ∑
v∈XT

wuv −
∑
v∈XS

wuv

)

≤ 1

2

∑
u∈YS

∣∣∣∣∣ ∑
v∈XS

wuv −
∑
v∈XT

wuv

∣∣∣∣∣
+

1

2

∑
u∈YT

∣∣∣∣∣ ∑
v∈XS

wuv −
∑
v∈XT

wuv

∣∣∣∣∣
≤ 1

2

∑
u∈Y

∣∣∣∣∣ ∑
v∈XS

wuv −
∑
v∈XT

wuv

∣∣∣∣∣
Further, we have,

Q(S) ≤ min(c|.|(XS , YS) + c|.|(XS , YT ),

c|.|(XT , YT ) + c|.|(XT , YS))

= min(c|.|(XS , V \X), c|.|(XT , V \X))

Therefore, we have, Q(S) ≤ PX(XS).

Thus, we have,

c(S)−min(c(S \X), c(T \X)) = c(XS , XT )−Q(S)

≥ c(XS , XT )− PX(XS).

Hence, we have,

νG(X) ≥ min
S⊆V,S	X

(C (S)−min (C (S \X) , C (T \X)))

≥ min
S⊆V,S	X

(c(XS , XT )− PX(XS))

= min
Z⊂X,Z 6=∅

(c(Z,X \ Z)− PX(Z)).



B. Efficient search for NGs

Now, we use the non-separability index lower bound in
Lemma IV.1 to search for non-separable and antipolar pairs
of sizes 2 and 3.

Non-separable pair identification. Consider an edges (u, v) ∈
E. Our goal is to determine the relation between u and v,
whether they make an NG, a weakly NG, or an antipolar pair.
For an edge (u, v) ∈ E, we define fast score ν̂f and similarity
score ν̂s for (u, v) as follows

ν̂f(u, v) = 2|wuv| −min(‖w(u)‖, ‖w(v)‖), (7)

ν̂s(u, v) =

{
2|wuv| − 1

2‖w
(u) −w(v)‖ if wuv ≥ 0,

2|wuv| − 1
2‖w

(u) + w(v)‖ if wuv < 0.
(8)

Lemma IV.2. Consider a graph G = (V,E,w). For any edges
(u, v) ∈ E, we have:
• If max(ν̂f(u, v), ν̂s(u, v)) > 0,

– if wuv ≥ 0, {u, v} is an NG,
– if wuv < 0, (u, v) is an antipolar pair.

• If max(ν̂f(u, v), ν̂s(u, v)) = 0 and wuv ≥ 0, {u, v} is
classified as a weakly NG2.

Proof. Let X = {u, v} and Y = V \ X . We consider two
cases of wuv as follows.
Case 1: wuv ≥ 0. Based on Lemma IV.1, we have,

νG(X) ≥ wuv −min(
1

2

∑
z∈Y
|wuz − wvz|,

c|.|({u}, Y ), c|.|({v}, Y ))

= 2wuv −min(
1

2
‖w(u) −w(v)‖, ‖w(u)‖, ‖w(v)‖)

= max(ν̂f(u, v), ν̂s(u, v))

Thus, we have:
• If max(ν̂f(u, v), ν̂s(u, v)) > 0, {u, v} is an NG.
• If max(ν̂f(u, v), ν̂s(u, v)) = 0, {u, v} is classified as a

weakly NG.
Case 2: wuv < 0. Let G′ = flip(G, v). Similar to Case 1, we
have,

νG′(X) ≥ max(ν̂f(u, v), ν̂s(u, v)).

Thus, if max(ν̂f(u, v), ν̂s(u, v)) > 0, {u, v} is an NG in G′.
In other words, (u, v) is an antipolar pair in G.

Non-separable triple identification. Consider a group of three
nodes X = {u, v, z} that has at least 2 edges among the nodes.
Apply the lower bound on the non-separability index ν̂G(X)
in Lemma IV.1 on X , we have

ν̂G(X) < min
Z⊂X,Z 6=∅

(c(Z,X \ Z)) ≤MC(G[X]),

where G[X] is the subgraph induced by X in G.
Recall that, we can only find the relation among the nodes in

X if the ν̂G(X) ≥ 0. Hence, we will flip the nodes in X such

2{u, v} could actually be an NG but the bound is not tight enough to detect

u

v z

u

v z

(a) The number of edges
with negative weight is even.
All edges have non-negative
weights after flipping.

u

v z

u

v z

(b) The number of negative
weights is odd. The edge (u, v)
(with the smallest absolute
weight) has a negative weight
after flipping.

Fig. 3: Flipping nodes in X = {u, v, z} to ensure the WMC
on the induced graph on X is non-negative.

that the WMC in the subgraph induced by X is non-negative.
As every time we flip a node in X , we always change the signs
of two edges in G[X], the parity on the number of negative
weight edges remain the same. Thus, we consider two cases
based on the number of edges with negative weight (see Fig.
3).
• Case 1: The number of edges with negative weight is

even. In this case, we can flip the nodes in X such that
all edges in G[X] is non-negative. Thus, the WMC of
G[X] is non-negative.

• Case 2: The number of edges with negative weight is
even. In this case, we can flip the nodes in X such that
only the edge, with the smallest absolute weight, has a
negative weight after flipping. Now, the WMC of G[X]
is also non-negative.

Let X̄ ⊆ X be the set of nodes that we need to flip so that
the WMC of G[X] is also non-negative. Let G′ = flipX̃(G)
and w̃uv, w̃uz, w̃vz be the weight of (u, v), (u, z), (v, z),
respectively, on G′. We define the triangle score ν̂t as follows.

ν̂t(X) = min
x∈X

( ∑
y∈X\{x}

w̃xy −min
(
‖w(x)‖ −

∑
y∈X\{x}

|wxy|,∑
y∈X\{x}

(
‖w(y)‖ −

∑
z∈X\{y}

|wyz|
)))

(9)

Lemma IV.3. Consider a graph G = (V,E,w) and any set
X ⊆ V of size 3. Let X̄ ⊆ X be the set of nodes that we
need to flip so that the WMC of G[X] is also non-negative. If
ν̂t(X) > 0, we have:
• X̃ and X \ X̃ are NG groups.
• ∀u ∈ X̃, v ∈ X \ X̃ , (u, v) is an antipolar pair.

Proof. Let G′ = flipX̃(G) and w̃uv, w̃uz, w̃vz be the weight
of (u, v), (u, z), (v, z), respectively, on G′. Let Y = V \X ,
we have,

ν̂G′(X) ≥ min
x∈X

( ∑
y∈X\{x}

w̃xy −min(c|.|({x}, Y ),

c|.|(X \ {x}, Y ))
)

= min
x∈X

( ∑
y∈X\{x}

w̃xy −min
(
‖w(x)‖ −

∑
y∈X\{x}

|wxy|,∑
y∈X\{x}

(
‖w(y)‖ −

∑
z∈X\{y}

|wyz|
)))

= ν̂t(X).



If ν̂t(X) > 0, X is an NG on G′. Thus, X̃ and X \ X̃ are
NGs. And ∀u ∈ X̃, v ∈ X \ X̃ , (u, v) is an antipolar pair.

C. FastHare algorithm

We now describe the FastHare algorithm to reduce the
Hamiltonian. The algorithm follows the compression frame-
work (see Fig 1) in Section III. It transforms the Hamiltonian
reduction task into a graph compression problem. Its main
algorithm also consists of multiple rounds, each round consists
of three steps: 1) identification of NGs, weakly NGs, and
antipolar pairs 2) enlarging step, and 3) compression step.

The identification of NGs is done by computing fast scores,
the similarity scores, and the triangle scores for groups of
2 and 3 nodes in the graph. The main trick is to levarage
fast score, that can be computed and maintained efficiently
after merging and flipping, to guide the search for potential
edges and triangles and attemp to prove their non-separability
with more expensive bounds/scores. The pseudocode of the
FastHare algorithm is given in Algorithm 1.

Algorithm 1: Algorithm FastHare.
Input : A graph G = (V,E,w) and a parameter α
Output: A compressed graph.

1 Compute the fast score ν̂f(u, v)∀(u, v) ∈ E Add top nα
edges with the highest fast score to a list L

2 Compute the similarity score for all edges in L
3 For (u, v) ∈ L and w ∈ adj(u) ∪ adj(v), compute

ν̂t({u, v, z}
4 repeat
5 Obtain Xs,Xw,R from pairs and triples with

non-negative updated scores (Lemmas IV.2 and IV.3)
6 Compress the graph G based on the list Xs,Xw,R

using the compression in Subsection III-C3
7 Update the scores and the list L on the new graph
8 until Xs,Xw,R = ∅;
9 Return G

a) Initialization (Lines 1-3, Alg. 1): The FastHare algo-
rithm starts with an initialization phase, followed by a loop
of iterations to reduce the Hamiltonian. In the initialization
phase, we compute the fast score (Eq. 7) for all edges and
select the top nα edges with the highest fast score to a list L.
Then, we compute the similarity score for all edges in L and
the triangle score for the groups that have at least one edges
in L.

b) Iterative compression (Lines 5-7, Alg. 1): In each
iteration, we obtain the collection of NGs Xs, the collection
of weakly NGs Xw, and the collection of antipolar pairs
R from pairs and triples with non-negative updated scores
(Lemmas IV.2 and IV.3). The scores are computed in the
previous iteration (or the initialization for the first iteration).
Then, we compress the graph G based on the list Xs,Xw,R
using the compression in Subsection III-C3. Finally, we update
the scores and the list L on the new graph.
Efficiently maintaining the score. For each node v ∈ V , we
maintain a value Av = ‖w(v)‖. Plus, for each edge (u, v) ∈ L,

we maintain a value Buv = B′uv − |wuz| − |wvz|, where

B′uv =

{∑
z∈adju∩adjv

|wuz − wvz| if wuv ≥ 0,∑
z∈adju∩adjv

|wuz + wvz| if wuv < 0,

where adjv is the set of neighbors of the node v.
For any pair (u, v) ∈ E, we can compute the fast score

ν̂f(u, v) = 2|wuv| −min(Au, Av).

For any pair (u, v) ∈ L, we can compute the similarity score

ν̂s(u, v) = 2|wuv| −
1

2
(Au +Av +Buv).

The triangle score of a group X can also be computed based
on the values of A.
Updating the scores after flipping a node. After flipping a node
u, ∀v ∈ V the value Av does not change. We only need to
update the value of Buv for all (u, v) ∈ L such that v ∈ adju.
For the edge (v, z) ∈ L such that v, z ∈ adju, the value of
Buv does not changed since the sign of both wuv and wuz are
changed.
Updating the scores after merging two nodes. After merging
two nodes (x, y) to a new node z. We compute the new value
of Az and update the value Au for all u ∈ adjx∪adjy . For the
similarity score, we remove all edges in L that one endpoint
is x or y. Then we update Buv for all edges (u, v) ∈ L such
that both u and v are adjacent to x or y. We also add at most
α edges from z with the highest fast score to L and update
the value B of those edges. This limitation on the number of
updated edges is important to keep the running time bounded
by O(αn2).

D. Complexity analysis

Lemma IV.4. The time complexity of the FastHare algorithm
(Algorithm 1) is O(n2α)

Proof. For the initialization, the time complexity to compute
the fast score, the similarity score, and the triangle score is
O(n2), O(n2α), and O(n2α), respectively.

For the iterative compression, after flipping a node u, we
only need to compute for all (u, v) ∈ L such that v ∈ adju.
Thus, the cost to update the scores after a flipping is O(nα).
After the merging two nodes (x, y) to a node z, we update
the score for all edges (u, v) ∈ L such that both u and v are
adjacent to x or y and the top α edges from z with the highest
fast score. Thus, the cost to update after a merging is O(nα).
In FastHare the total number of flipping/merging is n. Thus,
the total time complexity to update the score is O(n2α). Plus,
in each iteration, we only check for the pairs and triplets that
have the scores updated. Thus, the time complexity to check
the pairs and triplets is O(n2α).

Therefore, in total, the time complexity of the FastHare
algorithm is O(n2α).



V. EXPERIMENT

We perform numerical experiments to assess the perfor-
mance of the proposed methods in terms of reduction ratio
and processing time. Further, we analyze characteristics of the
benchmarked instances to identify factors that are important
for the reducibility of Hamiltonian.
A. Experiments settings

Algorithms. We compare FastHare algorithm, that is described
in Section IV with the implementation of D-Wave’s SDK3.
The implementation of D-Wave’s SDK applies a roof duality
technique [20] to minimizing assignments for some of the
variables [24], [21]. For the FastHare algorithm, we set the
parameter α = 2.
Instances. We benchmark the algorithms on both synthetic in-
stances and 3000+ instances derived from the popular MQLib
collection [32].
• Synthetic instances. We generate a random network and

assign uniformly random weights in some interval to
all edges. Here, the random network is generated using
Erdos-Renyi (ER) network model (each edge has a fixed
probability of being present or absent) and scale-free (SF)
network model (the networks whose degree distribution
follows a power law) using networkX library [33]. We
set the number of nodes to 10, 000 and the average
degree to 6, and integral weights are uniformly chosen
in {−210..210}.

• MQLib [32]. We also benchmark the algorithm over
3, 000+ instances that provided in [32]. MQLib is a
standard instance library for Max-Cut and QUBO. All
QUBO instances were converted to Max-Cut instances.
The authors collect the data from multiple sources such
that Gset [34], Beasley[35]. They also generated a num-
ber of random graphs using Culberson random graph
generators [36] and convert image segmentation problems
to Max-cut using the techniques in [37].

Metrics. We compare the performance of the algorithms based
on the following metrics.

Processing time. We measure the time to reduce the size the
instances of algorithms. We exclude any time to read or write
data from hard drives.

Reduction ratio. We compute the reduction ratio (Eq. 3) with
size of Hamiltonian measured in both the number of physical
and logical qubits (the number of variables).

We measure the number of physical qubits on the D-wave
Advantage QPU’s topology, called Pegasus [38]. A Pegasus
topology PM contains 8(3M − 1)(M − 1) qubits4, in which
each qubit connect to at most 15 others. The current Advantage
QPU is built on a P16 Pegasus topology with 5, 640 qubits.

In this work, we use a method called Minorminer5 (de-
veloped by D-Wave) to embed the instance to P100 Pegasus

3https://docs.ocean.dwavesys.com/en/latest/docs preprocessing/reference/
lower bounds.html

4To be precise, PM contains 24M(M − 1) qubits. However, 8(M − 1)
qubits are disconnected to the remaining.

5https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/

topology (with 236, 808 qubits) and measure the number
of qubits for the embedding. We set the time limit of the
embedding at one hour.
Environment. We implemented our algorithms in C++ and
obtained the implementations of others from the corresponding
authors. We conducted all experiments on a CentOS machine
Intel(R) Xeon(R) CPU E7-8894 v4 2.40GHz.

B. Benchmark on synthetic instances

2 4 6 8 10
Average degree

0

20

40

60

80

100

Re
du

ct
io

n 
ra

tio
 (%

)

FastHare
D-Wave

(a) Erdos-Renyi networks

2 4 6 8 10
Average degree

0

20

40

60

80

100

Re
du

ct
io

n 
ra

tio
 (%

)

(b) Scale-free networks

Fig. 4: Reduction ratio on physical qubits (the higher is better).
FastHare provides significant reduction on instances of differ-
ent sizes with more reduction towards sparser instances. The
implemented reduction in D-Wave’s SDK offers no reduction
for any instances.
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Fig. 5: Processing time in seconds on Erdos-Renyi (ER) net-
works, marked with solid lines, and scale-free (SF) networks,
marked with dashed lines.

Reduction ratio. In Fig. 4, we show the reduction ratio on
physical qubits for FastHare and D-wave. The roof duality
implemented in D-Wave’s SDK offers no reduction for any
instances. In contrast, FastHare can reduce all instances with
the average reduction ratios on Erdos-Renyi and scale-free
networks of 29% and 67%, respectively.

The reduction ratio gets lower quickly when the average
degree increases. It suggests dense Ising Hamiltonians are
generally harder to reduce. In addition, the instances with
Erdos-Renyi topology are much harder to reduce comparing to
the ones with scale-free topology. This suggests that random
Hamiltonian with Erdos-Renyi topology of high degree contain
less ‘redundant’ information and, thus, can be used as hard
benchmark instances for quantum solvers.

https://docs.ocean.dwavesys.com/en/latest/docs_preprocessing/reference/lower_bounds.html
https://docs.ocean.dwavesys.com/en/latest/docs_preprocessing/reference/lower_bounds.html
https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/


Problem #tests #nodes Deg. Avg. processing time #reducible instances Reduction ratio
Logical qubits Physical qubits

FastHare D-Wave FastHare D-Wave FastHare D-Wave FastHare D-Wave
Gset [34] 17 5k-20k 2-12 0.0s 0.1s 5 3 6% (19%) 0% (2%) NA (NA) NA (NA)
Beasley [35] 60 0k-3k 6-250 0.0s 0.1s 20 3 8% (24%) 0% (2%) 10% (31%) 1% (4%)
Culberson [36] 108 1k-5k 4-2,927 0.1s 0.1s 57 0 8% (15%) 0% (0%) 28% (31%) 0% (0%)
Imgseg [37] 100 1k-28k 2-5 0.1s 0.2s 100 0 79% (79%) 0% (0%) 92% (92%) 0% (0%)
Others 3,111 0k-38k 1-6,965 0.3s 0.5s 1,302 296 21% (50%) 8% (82%) 35% (62%) 10% (84%)
Overall 3,396 0k-38k 1-6,965 0.3s 0.5s 1,484 302 22% (51%) 7% (81%) 36% (62%) 10% (84%)

TABLE I: Comparison on real world problems. Here, we can only embed 2, 031 instances with in an hour. The reduction ratio
of physical qubits is reported based on those instances.

Processing time. Based on Fig. 5, the processing time of
FastHare is several folds faster than D-Wave’s. For example,
on the largest Erdos-Renyi network with the number of nodes
n = 100, 000, the running time of FastHare and D-Wave
are 0.2s and 0.8s, respectively. Nevertheless, in terms of
processing time, both roof duality implemented in D-Wave
and FastHare are highly efficient in preprocessing Hamiltonian
before mapping to the QPU.

C. Benchmark on MQLib instances

Our experiments on MQLib [32] is shown in Table I. The
results indicate a significant reduction by FastHare algorithm.
FastHare outperforms D-Wave in the reduction ratio. It can
reduce 1, 484 out of 3, 396 instances, i.e., about 5 times more
than that of D-Wave’s roof duality. The average reduction
ratio in terms of logical and physical qubits among the
reducible instances are 51% and 62%, respectively. It suggest
a significant qubit savings as a 62% reduction mean we can
solve instances that require 2.5 times more qubits than the
current limit on the state-of-the-art quantum annealers.

D. Reducibility prediction

We investigate 70 metrics that are provided in the MQLib6

to see which characteristics affect the reducibility of the in-
stances. We rank the metrics based on the Pearson correlation
coefficient [39] with the reduction ratio. Top 5 characteristics
with the highest correlation for FastHare and D-Wave are
shown in Table II.

The top two metrics (log norm ev2 and log norm ev1,
respectively) are all calculated from the weighted graph Lapla-
cian matrix: the logarithm of the first and second largest
eigenvalues normalized by the average node degree and the
logarithm of the ratio of the two largest eigenvalues (log
ev ratio). This suggests that Hamiltonian with sparse cut are
easier to reduce for FastHare.

The implemented D-Wave’s roof duality seems to work well
on instances with constant clustering coefficient (clust const).
This behavior requires further investigation to determine the
true reason behind why D-Wave’s roof duality works very well
on a few instances but cannot compress for the rest.

We also use logistic regression [40] to identify the metrics
that have the most effect on the reducibility of the instances.
Here, we remove 12 time related metrics and normalize the

6https://github.com/MQLib/MQLib/blob/master/data/metrics.csv

FastHare D-Wave
Metrics Corr. Metrics Corr.
log norm ev2 0.73 clust const 0.42
log norm ev1 0.66 clust log kurtosis -0.35
mis 0.59 clust max -0.27
log ev ratio -0.47 weight mean 0.25
clust stdev 0.46 mis 0.25

TABLE II: Top 5 metrics with the highest correlation with
reduction ratio.

remaining metrics such that the maximum absolute value of
each metric equal one. For each algorithm, we set the label of
an instance to one if the algorithm can reduce that instance.
After running the logistic regression, we normalize the weights
of the logistic regression such that the norm two of the weight
vector equal one. Table III shows the top 5 metrics with the
highest absolute weights.

FastHare D-Wave
Metrics Weight Metrics Weight
chromatic 0.33 mis 0.49
weight log kurtosis 0.29 weight max -0.39
mis 0.27 avg neighbor deg mean -0.26
avg neighbor deg mean -0.24 core log kurtosis 0.25
log ev ratio -0.20 percent pos -0.23

TABLE III: Top 5 metrics that have the highest absolute
weights in the logistic regression.

VI. CONCLUSION

We propose FastHare, an algorithm to reduce the size of
Ising Hamiltonian, thus, provide qubits saving for quantum
annealing. The method is generic and can be applied for Ising
Hamiltonian of different applications. We perform the first
large-scale benchmarks to measure the reducibility in 3000+
instances from MQLib library and synthesized Hamiltonian,
showing significant saving in applying Hamiltonian reduction.
Importantly, the fast processing time of FastHare (averag-
ing 0.3s) make it an inexpensive choice for preprocessing.
FastHare also outperforms the roof duality reduction, imple-
mented in D-Wave’s Ocean SDK, both in time and quality by
several folds. In future, FastHare can be integrated with minor-
embedding methods to balance between number of physical
qubits, chain lengths, and range of the coupling strengths to
further improve the performance of quantum solvers.

https://github.com/MQLib/MQLib/blob/master/data/metrics.csv
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in moiré superlattices,” Nature, vol. 604, no. 7906, pp. 468–473, 2022.

[6] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse
ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.

[7] Y. Zhou and P. Zhang, “Noise-resilient quantum machine learning for
stability assessment of power systems,” IEEE Transactions on Power
Systems, 2022.

[8] D. M. Fox, K. M. Branson, and R. C. Walker, “mrna codon optimization
with quantum computers,” PloS one, vol. 16, no. 10, p. e0259101, 2021.

[9] V. K. Mulligan, H. Melo, H. I. Merritt, S. Slocum, B. D. Weitzner,
A. M. Watkins, P. D. Renfrew, C. Pelissier, P. S. Arora, and R. Bonneau,
“Designing peptides on a quantum computer,” BioRxiv, p. 752485, 2020.

[10] D. M. Fox, C. M. MacDermaid, A. M. Schreij, M. Zwierzyna, and R. C.
Walker, “Rna folding using quantum computers,” PLOS Computational
Biology, vol. 18, no. 4, p. e1010032, 2022.

[11] S. Mugel, M. Abad, M. Bermejo, J. Sánchez, E. Lizaso, and R. Orús,
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